A branch-and-bound algorithm for instrumental variable quantile regression

نویسندگان

  • Guanglin Xu
  • Samuel Burer
چکیده

This paper studies a statistical problem called instrumental variable quantile regression (IVQR). We model IVQR as a convex quadratic program with complementarity constraints and—although this type of program is generally NP-hard—we develop a branch-and-bound algorithm to solve it globally. We also derive bounds on key variables in the problem, which are valid asymptotically for increasing sample size. We compare our method with two well known global solvers, one of which requires the computed bounds. On random instances, our algorithm performs well in terms of both speed and robustness.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Quantile Regression with Adaptive Lasso Penalty for Dynamic Panel Data

‎Dynamic panel data models include the important part of medicine‎, ‎social and economic studies‎. ‎Existence of the lagged dependent variable as an explanatory variable is a sensible trait of these models‎. ‎The estimation problem of these models arises from the correlation between the lagged depended variable and the current disturbance‎. ‎Recently‎, ‎quantile regression to analyze dynamic pa...

متن کامل

Instrumental Variable Quantile Regression * †

Quantile regression is an increasingly important tool that estimates the conditional quantiles of a response Y given a vector of regressors D. It usefully generalizes Laplace’s median regression and can be used to measure the effect of covariates not only in the center of a distribution, but also in the upper and lower tails. For the linear quantile model defined by Y = D′γ(U) where D′γ(U) is s...

متن کامل

Instrumental Variable Quantile Regression: A Robust Inference Approach

In this paper, we develop robust inference procedures for an instrumental variables model defined by Y = D′α(U) where D′α(U) is strictly increasing in U and U is a uniform variable that may depend onD but is independent of a set of instrumental variables Z. The proposed inferential procedures are computationally convenient in typical applications and can be carried out using software available ...

متن کامل

Quantile Regression Forests

Abstract Random Forests were introduced as a Machine Learning tool in Breiman (2001) and have since proven to be very popular and powerful for high-dimensional regression and classification. For regression, Random Forests give an accurate approximation of the conditional mean of a response variable. It is shown here that Random Forests provide information about the full conditional distribution...

متن کامل

Bayesian variable selection in quantile regression

In many applications, interest focuses on assessing relationships between predictors and the quantiles of the distribution of a continuous response. For example, in epidemiology studies, cutoffs to define premature delivery have been based on the 10th percentile of the distribution for gestational age at delivery. Using quantile regression, one can assess how this percentile varies with predict...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Math. Program. Comput.

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2017